VÍRUS DA VARÍOLA DO MACACO: MODELAGEM E ANÁLISE DE PROTEÍNAS POR BIOINFORMÁTICA

MONKEYPOX VIRUS: MODELING AND ANALYSIS OF PROTEINS BY BIOINFORMATICS

Authors

DOI:

https://doi.org/10.24933/e-usf.v6i2.303

Keywords:

Aminoácidos, Conservação estrutural, Análises in silico, modelagem

Abstract

Monkeypox virus, the causative agent of monkeypox, is an Orthopoxvirus of zoonotic infection apparently similar to Smallpox virus, which causes human smallpox. The initiative for analysis using bioinformatics was due to the appeal to speed, practicality and technology that it confers, in addition to being in great demand in current scientific studies. This study aimed to identify, model and analyze protein structures of clinical importance of the virus, through sites and programs of bioinformatics and protein homology, in order to bring knowledge and material for future experimental studies. Six homologous proteins were modeled and studied, one of them from the Smallpox virus, following some selection criteria. All showed great accuracy in relation to the proteins described and with regions of target sites in full conservation status, with the exception of one, where it was not possible to define this. It was concluded that these models are valid and consistent with reality, serving as a basis for studies with the aim of developing therapies against monkeypox, in addition to the fact that there is a relationship between the symptomatology of the two smallpox and the conservation of amino acids in the proteins.

Downloads

Download data is not yet available.

Author Biographies

Silva, Universidade São Francisco - USF

Aluna do curso de Biomedicina.

Matheus Pereira Souza, Universidade São Francisco - USF

Aluno do curso de Biomedicina

Curcelli, Universidade São Francisco - USF

Docente no curso de Medicina Veterinária.

Aline Sampaio Cremonesi, Universidade São Francisco

Graduada em Ciências Biológicas pela Pontifícia Universidade Católica de Campinas (PUCCAMP), possui Mestrado em Biologia Funcional e Molecular com ênfase em Bioquímica pela Universidade Estadual de Campinas (UNICAMP) e doutorado em Biotecnologia pela Universidade de São Paulo (USP), desenvolvendo todos os projetos no Laboratório Nacional de Biociências (LNBio) operado pelo Centro Nacional de Pesquisa em Energia e Materiais (CNPEM). Tem experiência em cultura e metabolismo microbiano, engenharia genética, expressão de proteínas em diferentes tipos celulares e análises biofísicas e estruturais de proteínas e peptídeos. Atualmente é professora com certificação Google for Education, de disciplinas na graduação e pós-graduação em diferentes cursos da área da saúde, com projetos voltados para a análises estruturais de transportadores do tipo ABC relacionados a resistência bacteriana e de organismos de interesse veterinário. É membro da equipe científica da empresa Aplasys, atuante na área de engenharia genética e solubilidade de proteínas.

References

ALTSCHUL, Stephen F. et al. Gapped BLAST and PSI-BLAST: new generation of protein a database search programs. Nucleic acids research, v. 25, n. 17, p. 3389-3402, 1997.DOI: https://doi.org/10.1093/nar/25.17.3389

ANDRADE, Kétyllen. Monkeypox virus associado à infecções humanas. Monografia, p. 25, 2012. DOI: http://hdl.handle.net/1843/ICBB-BD9QWB

BIGARAN, Larissa Toloy et al. A literature review on the clinical and epidemiological aspects of Monkeypox. Research, Society and Development, v. 11, n. 9, p. e23411931612-e23411931612, 2022. DOI: https://doi.org/10.33448/rsd-v11i9.31612

BRASIL. Ministério da Saúde. Ministério da Saúde divulga boletim epidemiológico especial sobre a varíola dos macacos. Boletim Epidemiológico de Monkeypox nº 8 (COE), n. 8, p. 1-17, 2022.

BROOKS, Geo F. et al. Microbiologia Médica de Jawetz, Melnick & Adelberg-26. AMGH Editora, 2014.

BUCHAN, D. W. A.; JONES, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research, v. 47, n. W1, p. W402–W407, 26 abr. 2019. DOI: https://doi.org/10.1093/nar/gkz297.

BUNGE, Eveline M. et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS neglected tropical diseases, v. 16, n. 2, p. e0010141, 2022. DOI: https://doi.org/10.1371/journal.pntd.0010141

BURLEY, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, v. 49, n. D1, p. D437–D451, 19 nov. 2020. DOI: https://doi.org/10.1093/nar/gkaa1038

CALIXTO, Paulo Henrique Matayoshi. Aspectos gerais sobre a modelagem comparativa de proteínas. Ciência Equatorial, v. 3, n. 1, 2013.

CHANG, Hung-Wei et al. Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS pathogens, v. 15, n. 6, p. e1007826, 2019. DOI: https://doi.org/10.1371/journal.ppat.1007826.

CHENNA, Ramu et al. Multiple sequence alignment with the Clustal series of programs. Nucleic acids research, v. 31, n. 13, p. 3497-3500, 2003. DOI: https://doi.org/10.1093/nar/gkg500.

DA FONSECA, Flávio G. et al. Characterization of the vaccinia virus H3L envelope protein: topology and posttranslational membrane insertion via the C-terminal hydrophobic tail. Journal of Virology, v. 74, n. 16, p. 7508-7517, 2000. DOI: https://doi.org/10.1128/JVI.74.16.7508-7517.2000.

DAMON, Inger K. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine, v. 29, p. D54-D59, 2011. DOI: https://doi.org/10.1016/j.vaccine.2011.04.014.

DELANO, W.L. The PyMol Molecular Graphics System DeLano Scientific, 2002.

DIAZ, J. H. The Disease Ecology, Epidemiology, Clinical Manifestations, Management, Prevention, and Control of Increasing Human Infections with Animal Orthopoxviruses. Wilderness & Environmental Medicine, 32(4), 528–536, 2021. DOI: https://doi.org/10.1016/j.wem.2021.08.003.

JARDIM, Fabiana. Varíola dos macacos: Novo surto global. VITTALLE-Revista de Ciências da Saúde, v. 34, n. 1, p. 7-8, 2022.

GIULIO, Daniel B Di; Eckburg, Paul B. Human monkeypox: an emerging zoonosis. The Lancet Infectious Diseases. v. 4, p. 15-25, jan., 2004. DOI: https://doi.org/10.1016/S1473-3099(03)00856-9.

HALANI, Sheliza; MISHRA, Sharmistha; BOGOCH, Isaac I. The monkeypox virus. CMAJ, 2022. DOI: https://doi.org/10.1503/cmaj.220795.

KABUGA, Auwal I.; EL ZOWALATY, Mohamed E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. Journal of Medical Virology, v. 91, n. 4, p. 533-540, 2019. DOI: https://doi.org/10.1002/jmv.25348.

KRUMM B, MENG X, LI Y, XIANG Y, DENG J. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein. Proc Natl Acad Sci U S A. 2008; DOI: https://doi.org/10.1073/pnas.0809086106.

MATHO MH, MAYBENO M, BENHNIA MR, et al. Structural and biochemical characterization of the vaccinia virus envelope protein D8 and its recognition by the antibody LA5. J Virol. 2012; DOI: https://doi.org/10.1128/JVI.00836-12.

MOORE MJ, Rathish B, Zahra F. Monkeypox. 2022 Jul 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. DOI: https://www.ncbi.nlm.nih.gov/books/NBK574519/.

MOURE CM, BOWMAN BR, GERSHON PD, QUIOCHO FA. Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Mol Cell. 2006; DOI: https://doi.org/10.1016/j.molcel.2006.03.015.

NILES, EDWARD G.; SETO, JANNY. Vaccinia virus gene D8 encodes a virion transmembrane protein. Journal of virology, v. 62, n. 10, p. 3772-3778, 1988. DOI: https://doi.org/10.1128/jvi.62.10.3772-3778.1988.

SCHOCH, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, v. 2020, 1 jan. 2020. DOI https://doi.org/10.1093/database/baaa062.

SINGH, Kavita et al. The vaccinia virus H3 envelope protein, a major target of neutralizing antibodies, exhibits a glycosyltransferase fold and binds UDP-glucose. Journal of Virology, v. 90, n. 10, p. 5020-5030, 2016. DOI: https://doi.org/10.1128/JVI.02933-15.

SOUSA, Álvaro Francisco Lopes de; SOUSA, Anderson Reis de; FRONTEIRA, Inês. Varíola de macacos: entre a saúde pública de precisão e o risco de estigma. Revista Brasileira de Enfermagem, v. 75, 2022. DOI: https://doi.org/10.1590/0034-7167.2022750501pt.

TEUFEL, Felix et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature biotechnology, p. 1-3, 2022. DOI: https://doi.org/10.1038/s41587-021-01156-3.

WEBB, Benjamin; SALI, Andrej. Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, v. 54, n. 1, p. 5.6. 1-5.6. 37, 2016. DOI: https://doi.org/10.1002/cpbi.3

WORLD HEALTH ORGANIZATION et al. Surveillance, case investigation and contact tracing for monkeypox: interim guidance, 25 August 2022. World Health Organization, 2022.

ZIMMERMANN, Lukas et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of molecular biology, v. 430, n. 15, p. 2237-2243 2018. DOI: https://doi.org/10.1016/j.jmb.2017.12.007

Published

2023-05-29

How to Cite

Silva, Pereira Souza, M., Curcelli, & Cremonesi, A. S. (2023). VÍRUS DA VARÍOLA DO MACACO: MODELAGEM E ANÁLISE DE PROTEÍNAS POR BIOINFORMÁTICA: MONKEYPOX VIRUS: MODELING AND ANALYSIS OF PROTEINS BY BIOINFORMATICS. Ensaios USF, 6(2). https://doi.org/10.24933/e-usf.v6i2.303

Issue

Section

Ciências Biológicas e da Saúde