Caracterización estructural de los transportadores abc de molibdato y oligopéptidos en Mycobacterium tuberculosis mediante bioinformática.
DOI:
https://doi.org/10.24933/e-usf.v8i1.382Palabras clave:
Multirresistencia, Bioinformática, Diseño racional de medicamentos, Biología estructuralResumen
Mycobacterium tuberculosis, un patógeno de la tuberculosis, desafía la salud pública debido a la resistencia a los antibióticos y la alta mortalidad asociada, lo que hace necesaria la búsqueda constante de nuevos antimicrobianos. Una potencial diana terapéutica son los transportadores ABC de molibdato y oligopéptidos, ya que juegan un papel crucial en la supervivencia de las bacterias al importar estos nutrientes esenciales al interior de la célula, por lo que el objetivo de este trabajo es identificar y caracterizar estos transportadores en M. tuberculosis a partir de análisis in silico. Para cada uno de los nutrientes estudiados se identificó un sistema completo de transportadores de tipo ABC, compuesto por SBPs, permeasas y ATPasas, organizados en operones únicos en el genoma. Estructuralmente, las SBP mostraron regiones de péptidos señal que indican funciones extracelulares, mientras que las permeasas mostraron seis regiones transmembrana, lo que sugiere localización en la membrana. Las ATPasas se identificaron por la presencia del dominio AAA característico. Los SBP, ModA y OppA, presentaron modelos de estructuras tridimensionales conservadas, clasificándose como SBP tipo II y el análisis de secuencia identificó aminoácidos conservados en las bolsas de unión de los SBP, lo que sugiere interacciones con sustratos. Estos resultados resaltan objetivos potenciales para terapias antimicrobianas, proporcionando datos para futuras investigaciones sobre el mecanismo de interacción entre los SBP y los sustratos transportados por ellos.
Descargas
Citas
ALTSCHUL, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, v. 25, p. 3389-3402, 1997. DOI: https://doi.org/10.1093/nar/25.17.3389
ARMENTEROS, J. J. A.; TSIRIGOS, K.; SONDERBY, C. K.; PETERSEN, T. N.; WINTHER, O.; BRUNA K., S.; HEIJNE, G. v.; NIELSEN, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, v. 37, n. 4, p.420-423, 2019. DOI: https://doi.org/10.1038/s41587-019-0036-z
BARREIRO, E J.; FRAGA, C. A. M. Química Medicinal: As bases moleculares da ação dos fármacos. Artmed Editora, 2014.
BUCHAN, D. W. A., JONES, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic acids research, v.2, n. 47, 2019. (W1), W402–W407. DOI: https://doi.org/10.1093/nar/gkz297
CAMINERO, L. JA. Challenges and Outlooks in Multi-drug Resistant Tuberculosis. Arch Bronconeumol. 2017 Aug. v.53, n. 8, p.417-418. English, Spanish. DOI: https://doi.org/10.1016/j.arbres.2017.01.018
CHAI, H.; KIM, Y.; HAM, J.; KIM, T.; LIM, D. Identifying ligand-binding specificity of the oligopeptide receptor OppA from Bifidobacterium longum KACC91563 by Structure-based molecular modeling. Research Square; 2020. DOI: https://doi.org/10.1016/j.arabjc.2022.104198
CHEN, Ping et al. A highly efficient Ziehl-Neelsen stain: identifying de novo intracellular Mycobacterium tuberculosis and improving detection of extracellular M. tuberculosis in cerebrospinal fluid. Journal of clinical microbiology, v. 50, n. 4, p. 1166-1170, 2012. DOI: https://doi.org/10.1128/jcm.05756-11
CREMONESI, A.S.; DE LA TORRE, L.I.; DEGENHARDT, M.F.S.; MUNIZ,G.S.V.; LAMY, V.T.; OLIVEIRA, C.L.P. BALAN, A. The citrus plant pathogen Xanthomonas citri has a dual polyamine-binding protein. Archives of Biochemistry and Biophysics, v. 28, p. 1-12, 2021. DOI: https://doi.org/10.1016/j.bbrep.2021.101171
DELANO, W. L. The PyMol Molecular Graphics System DeLano Scientific, 2002. http://www.pymol.org/
DEVLIN, T. M. Manual de bioquímica: com correlações clínicas. Editora Blucher, 2011.
FILHO, O. A. S.; ALENCASTRO, R. B. Modelagem de proteínas por homologia. Química Nova, v. 26, p. 253-259, 2003. DOI: https://doi.org/10.1590/S0100-40422003000200019
GUNA, A.; HEDGE, R. S. Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control. Current Biology Review, v.28, 2018. DOI: https://doi.org/10.1016/j.cub.2018.02.004
HU, Y., RECH, S., GUNSALUS, R. et al. Crystal structure of the molybdate binding protein ModA. Nat Struct Mol Biol, v.4, p.703–707, 1997. DOI: https://doi.org/10.1038/nsb0997-703
KANEHISA, M. et al. KEGG for linking genomes to life and the environment. Nucleic acids research, v. 36, n. suppl_1, 2007, p. D480-D484. DOI: https://doi.org/10.1093/nar/gkm882
KROGH, A. et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, v. 305, n. 3, p. 567-580, 2001. DOI: https://doi.org/10.1006/jmbi.2000.4315
LARKIN, M. A. et al. Clustal W and Clustal X version 2.0. bioinformatics, v. 23, n. 21, p. 2947-2948, 2007. DOI: https://doi.org/10.1093/bioinformatics/btm404
LIMA, R. N. S.; COSTA, S. O. P. D.; FERREIRA, R. C. C. O Transporte de Oligopeptídeos na fisiologia e patogênese de bactérias do gênero Streptococcus. Revista de Microbiologia, Janeiro, 2014.
LOCHER, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol, v.23, p. 487-493, 2016. DOI: https://doi.org/10.1038/nsmb.3216
MCGUFFIN, L. J.; BRYSON, K.; JONES, D. T. The PSIPRED protein structure prediction server. Bioinformatics Applications Note, v. 16, p. 404-405, 2000. DOI: https://doi.org/10.1093/bioinformatics/16.4.404
MENON, S.; PIRAMANAYAKAM, S.; AGARWAL, G. Computational identification of promoter regions in prokaryotes and Eukaryotes. EPRA International Journal of Agriculture and Rural Economic Research (ARER), v. 9, n. 7, p. 21-28, 2021. DOI: https://doi.org/10.36713/epra7667
MIRDITA, M., SCHUTZE, K., MORIWAKI, Y. et al. ColabFold: making protein folding accessible to all. Nat Methods,v.19, p.679–682, 2022. DOI: https://doi.org/10.1038/s41592-022-01488-1
MOUTRAN, A. Modelagem molecular das proteínas captadoras de Molibdato (ModA) e Oligopeptídeo (OppA) de Xanthomonas axonopodis pv. citri. 2009. Tese (Doutorado em Microbiologia) – Universidade de São Paulo, São Paulo, 2009. DOI: https://doi.org/10.11606/T.42.2009.tde-16072009-100344
OLIVEIRA, M. C. B.; BALAN, A. The ATP-Binding Cassette (ABC) transport systems in Mycobacterium tuberculosis: Structure, function, and possible targets for therapeutics. Biology, v. 9, n. 12, p. 443, 2020. DOI: https://doi.org/10.3390/biology9120443
ORGANIZAÇÃO MUNDIAL DA SAÚDE. Relatório Global sobre Tuberculose. Genebra: OMS, 2023. ISBN: 978-92-4-008385-1
PATRA, P. et al. Epitope-based vaccine designing of nocardia asteroides targeting the virulence factor mce-family protein by immunoinformatics approach. International Journal of Peptide Research and Therapeutics, v. 26, p. 1165-1176, 2020. DOI: https://doi.org/10.1007/s10989-019-09921-4
PRILUSKY, J., FELDER, C. E., ZEEV-BRN-MORDEHAI, T., RYDBERG, E. H., MAN, O., BECKMANN, J. S., SILMAN, I., SUSSMAN, J. L. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics (Oxford, England), v. 21, n. 16, p. 3435–3438, 2005. DOI: https://doi.org/10.1093/bioinformatics/bti537
PUCHADES, C.; SANDATE, C. R.; LANDER, G. C. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nature Reviews Molecular Cell Biology, v. 21, n. 1, p. 43-58, 2020. DOI: https://doi.org/10.1038/s41580-019-0183-6
RAHMAN, M. M.; MACHUCA, M. A.; ROUJEINIKOVA, A. Bioinformatics analysis and biochemical characterisation of ABC transporter-associated periplasmic substrate-binding proteins ModA and MetQ from Helicobacter pylori strain SS1. Biophysical Chemistry, v. 272, p. 106577, 2021. DOI: https://doi.org/10.1016/j.bpc.2021.106577
SALAMOV, V. S. A.; SOLOVYEVAND, A. Automatic annotation of microbial genomes and metagenomic sequences. Metagenomics and its applications in agriculture, biomedicine and environmental studies, p. 61-78, 2011.
SILVA, G. A. A. Caracterização do antígeno proteico ssaa de Staphylococcus saprophyticus utilizando estratégias in silico e modelo ex vivo de infecção. 2020. Tese (Mestrado em Genética e Biologia Molecular) - Universidade Federal de Goiás, Goiás 2020. http://repositorio.bc.ufg.br/tede/handle/tede/10597
SILVA, K.M.; FIGUEIREDO, N.G.; CREMONESI, A.S. Use of Bioinformatics Techniques in the Characterization of Genes and Proteins Involved in the Transport of Polyamines from Staphylococcus Genus. JSM Bioinformatics, Genomics and Proteomics, v. 6, n.1, 2023. DOI: https://doi.org/10.47739/2576-1102/1041
SOUZA, C. et al. Estratégia Algorítmica para a Reconstrução e Validação da Estrutura Molecular de Variantes do SARS-CoV-2. Anais do XV Brazilian e-Science Workshop. SBC, 2021. p. 65-72. DOI: https://doi.org/10.5753/bresci.2021.15790
SUBHASREE, C. R. et al. Review on comparative genomics for mycobacterium tuberculosis strains. International Journal of Pharmaceutical Sciences and Research, v. 8, n. 12, p. 5022-5042, 2017. DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(12).5022-42
TEUFEL, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature biotechnology, v. 40, n. 7, p. 1023-1025, 2022. DOI: https://doi.org/10.1038/s41587-021-01156-3
WEBB, B.; SALI, A. Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, v. 54, n. 1, 2016. DOI: https://doi.org/10.1002/cpbi.3
YANG X, LIU H, ZHANG Y, SHEN X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol., v.5, n.1, 2021. DOI: https://doi.org/10.3389/fmicb.2021.756136
ZAHA, A.; FERREIRA, H. B.; PASSAGLIA, L.M.P. Biologia Molecular Básica-5. Artmed Editora, 2014.
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem ao periódico o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais, separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).